180,323 research outputs found

    Christian Disco (Terminator)

    Get PDF
    Single screen video projection installation with asynchronous sound loops

    Dynamic urban projection mapping

    Get PDF
    “Dynamic projection mapping” is a variation of the best-known “projection mapping”. It considers the perceptual analysis of the urban landscape in which the video projection and the observer’s displacement speed are hypothesized. This latter, in particular, is variable and may depend on factors not directly controllable by the driver (slowdowns due to accidents, rallies, etc.). This speed can be supported and controlled by a number of traffic flow measurement systems. These data are available on the internet, like Google Maps APIs and/or speed sensors located close to the point of interest. The content of projection becomes dynamic and varies according to how the observer perceives the vehicle: slow, medium, fast

    Co-projection-plane based 3-D padding for polyhedron projection for 360-degree video

    Full text link
    The polyhedron projection for 360-degree video is becoming more and more popular since it can lead to much less geometry distortion compared with the equirectangular projection. However, in the polyhedron projection, we can observe very obvious texture discontinuity in the area near the face boundary. Such a texture discontinuity may lead to serious quality degradation when motion compensation crosses the discontinuous face boundary. To solve this problem, in this paper, we first propose to fill the corresponding neighboring faces in the suitable positions as the extension of the current face to keep approximated texture continuity. Then a co-projection-plane based 3-D padding method is proposed to project the reference pixels in the neighboring face to the current face to guarantee exact texture continuity. Under the proposed scheme, the reference pixel is always projected to the same plane with the current pixel when performing motion compensation so that the texture discontinuity problem can be solved. The proposed scheme is implemented in the reference software of High Efficiency Video Coding. Compared with the existing method, the proposed algorithm can significantly improve the rate-distortion performance. The experimental results obviously demonstrate that the texture discontinuity in the face boundary can be well handled by the proposed algorithm.Comment: 6 pages, 9 figure

    Optimum projection angle for attaining maximum distance in a soccer punt kick

    Get PDF
    Copyright @ Journal of Sports Science and Medicine 2011.This article has been made available through the Brunel Open Access Publishing Fund.To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10 degrees and 90 degrees. The kicks were recorded by a video camera at 100 Hz and a 2-D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player's optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player's preferred projection angles (40 degrees and 44 degrees). In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45 degrees. In the punt kicks studied here, the optimum projection angle was close to 45 degrees because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45 degrees.This article is made available through the Brunel University Open Access Publishing Fund
    • …
    corecore